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Scientific abstract

In this report we week to establish conditions for a certain parameterised family of polyconvex
functionals to have a global minimum. These functionals arise from considering the Dirichlet
energy functional and relate to the study of elasticity. The functionals we will be considering do
not meet the usual conditions to be treated by the direct method in the calculus of variations and
so we will make use of other techniques including partial differential inclusions and Fourier-type
analysis. We will develop several techniques for solving PDls and evaluate the benefits of these
methods in relation to analysing the functionals under consideration. Overall, we will obtain bounds
on a parameter in both the cases of sufficient and necessary conditions for the non-negativity of

the functional, which is equivalent to showing that zero is the global minimum.

Keywords and AMS Classification Codes: calculus of variatons; Dirichlet energy; polyconvexity;

partial differential inclusions; problem of potential wells






Notation

All notation in this report is understood to be standard, along with the following:

e We shall denote the two dimensional unit ball in the standard Euclidean norm by B and the

square [—2, +2]° by Q. An arbitrary bounded domain in R will be denoted by Q.

e The orthogonal and special orthogonal groups are
O(d) = {Me R : MTM = 14},
SO(d) = {M e R MTM = Iy, det M = 1}.
e All vector and matrix norms will be denoted by |-|, with the * being p > 1 for the operator

norm induced by the £P norm (or just the £P norm itself in the case of a vector norm) or F

for the Frobenius norm. Similarly, function space norms will be denoted using ||-|,.

o We will write mean integrals as

S
]éf(x)dx.— |Q|/Qf(x)dx

e The matrices diag(+1, 1) shall be denoted by /41 and we let

0 -1
J=
)

We shall define 6(a) € [0,27) to be the counter-clockwise angle the vector a € R? makes
with the positive x-axis. For 6 € R, let R(0) denote the standard matrix for rotating a vector

in R? counter-clockwise by 8 radians about the origin.

R(6) = <+ cos(6) —sin(@))

+sin(8) + cos(9)

For a vector a € R?, we then define

R(a) = R(6(a)) = # (a Ja)
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Introduction

1.1. Motivation & Literature Review

We shall start by considering the Dirichlet energy functional F : A — R, given by
F(u) = / IVul? dx
B
with the space of admissible functions being
A={ueu+W;?B;R? :detVu=1ae. }

where g is the so-called double-covering map. It can be shown that ug is in fact a stationary point

of F [6]. In analysing F, it is beneficial to introduce an excess functional E that is defined by
F(up + u) = F(up) + E(u)

If F were linear, the existence of £ would be trivial as we would simply have that £ = F. However,
for nonlinear F, such as the Dirichlet energy functional, the existence of an excess functional is not

guaranteed. Here, we find that
E(u) = / |VU|§ + f(x)det Vudx =: Ef(u)
B

with f(x) = 3log |x|, [6]. When we have a functional of this form, we often refer to f as the pressure
function, which acts as a Lagrange multiplier for the constraint det Vu = 1 (incompressibility [4]).

We observe that Ef takes the form
Ef(u) = / W(x,Vu)ydx  W:QxR>? SR
Q

with W being polyconvex [3,4,10]. In other words W (xp, A) = ¢x, (A, det A) with ¢y, : R®*2 xR —

R U {0} is convex, for each xp € 2. The minimisation of such functionals is often treated by the
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direct method in the calculus of variations [2,10] and a typical hypothesis is some form of coercivity
condition [9, 14, 15], a lower bound that encodes the growth rate of W in A, to show the existence

of a global minimiser. For example,
ar AR+ 1 (x) SW(x, A < az AR +72(x) as=a; >0 7,72 € LYQR)
is sufficient for Ef to have a global minimiser in W3 ?(2; R?) [10]. However, in our case of
W(x, A) = |A]2 + f(x) det A

we may not even have that W is bounded below (consider f with x, € © such that f(x,) < —4).
This motivates the exploration of novel techniques to minimise functionals of the form Ef. In

particular, we shall show that 0 is the global minimum of the functional
Ef(u) = / IVul2 + f(x)det Vudx ue W32 (B;R?)
B

with f(x) = X|x|, for particular values of A € RT. Since constant u satisfy Ef(u) = 0, it is
sufficient to show that Ef > 0. This is due to the fact that just a single u with Ef(u) < 0 would
imply that Ef(ku) = k?Ef(u) — —o0 as k — oo, making Ef unbounded below. We will now

investigate how the choice of the parameter X\ affects the bounding of Er.

1.2. Sufficient Conditions for Non-Negativity

We shall first establish sufficient conditions on A for non-negativity of the functional Ef. We can

do this quite crudely by making use of Hadamard's inequality (see 1.3):
Ef(u) = / IVu(x)[2 + X\ |x]|, det Vu(x) dx
B
A
> [ Va2 = 5 el Va2 dx

= [ (1= 5 ba) VUt x>0

for A < 2. Hence X\ < 2 is sufficient for non-negativity. We shall now seek to improve upon this
bound by considering a Fourier-like decomposition of the variable u, along with a weighted Poincaré

inequality.

Lemma 1.1. For f e W12((0, 1); R?) satisfying f(1) = 0, we have

1 1 1
| riwBers o [rieef o
0 Ja Jo

where jo is the first zero of the Bessel function Jy.
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Proof. We shall start by considering f satisfying fol r|f(r)|§ dr = 1. Then we shall minimize the

functional

1
f»—»/ rlF(n3dr f1)=0
0

subject to fol r|f(r)|3 dr = 1. To this end, we define the functional

A[f] = /01 rf'(r)?dr+ u </1 rf(r)?dr — 1) f(1)=0

0

with a parameter u € R. Here we have assumed f is scalar-valued as this is sufficient. We then

calculate .

A[f + €p] =/01r(f’+e<p’)2dr+u</o

1 1
= N[f] + 26/ rf'o +urfodr + 62/ r(@')? + ure?dr
0 0

r(f + ep)?dr — 1)

for arbitrary ¢ € C*((0, 1); R) satisfying ¢(1) = 0. From this we can find a stationary function f

by making the first variation zero, i.e:
1
0 =/ rf'o" + prfodr
0
1
= / (rf'e) — (rf") @ + prfodr
0

1
:/ (urf — (rf"))pdr Yo,
0

where we assume that
lim rf'(r) =0.

r—0+

If this doesn’t hold, then rf’(r) ~ A% 0 as r — 0 and so fol rf'(r)2dr ~ fol A72 dr = 400.Now we
must solve
urf —(rf’)" =0,

or equivalently
rPf" 4 rf — ur’f = 0.

This can be solved using Bessel functions to yield
f(r) = ado(+i/mr) + BYo(—i/wr)
for appropriate constants o, 3. We know that
lim rJy(r) =0,

r—0t

lim rYg(r) # 0.

r—0t
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Hence we take B8 = 0. To satisfy f(1) = 0, we need

OCJ()(/\/E) =0.

Since we do not wish to take a = 0 (f = 0 will not satisfy the constraint), we must have that

p = —jé for jo a zero of Jo. Finally we plug f(r) = aJo(jor) into the constraint:

Then

:Jl

h(o)? 2

(Jo)?
2 e .
% J1(jo)? = Jj&.

2
| 5 7 - b))

Jo

0

Since we wish to minimise this quantity, we shall in fact take jo to be the first zero of Jy. Thus we

have

1
/ rf'(r)2dr ng
0

1
/ rf(r)?dr = 1.
0

Now consider arbitrary £ € W12(0,1); R) with f(1) = 0. Then define f € W'2((0,1);R) by

= f(r)

Fr) = —\D
' «/fol sf(s)2ds
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Then (1) = 0 and fol rf(r)?dr = 1. Hence we have that

1 N f/ dr
/ rf'(r)2dr = —fo dy > j2,
0

fo rf(r)2dr
which gives the desired inequality
1 1 1
/ rf(r)?dr < _—2/ rf’(r)?dr.
0 Jo Jo

Now we perform a Fourier-like decomposition of u as

u=2u(1 ——Ao +ZA ) cos(j8) + Bj(r)sin(j6)
J=0 j>0

with the A;, B; : [0, 1] — R? satisfying Aj(1) = Bj(1) = 0 to ensure u|sg = 0. We then use the
orthogonality of the cos(j8) and sin(j6) in L2((0, 2m); R) to get the weighted Poincaré inequality

/B‘U(J)E dx:/lf,r(‘Aj(r)b—i-’B )[3) rar
_/ ‘A, +‘B/ |>rdr
AL

for Fourier modes. Similar calculations show that the inequality also holds for j = 0. We can use

this, along with Lemma 3.2 in [6], to deduce that

j=1

Ef(u) = / |Vul2 + f(x) det Vu(x) dx

AL
22/]2 u(j)‘ —I—‘u(j)’ ——‘u(f)‘ ‘u(j)’ dx
s 0 2 Tl 2 2177 2

_2/ ‘“O)‘z ‘“(J M — 76 _%
dr )

Jj=0

+ f0|x|)< J)Ju>dx

Then it is sufficient to show that M is positive-definite for non-negativity. Since M is symmetric
with tr M = 1+ j2 > 0, it suffices to check det M > 0. Here we have det M = j2 — ()% so
A < 4jg ~ 9.619 is sufficient. This gives us a true improvement of the bound XA < 2 that is
obtained by just using the pointwise Hadamard's inequality. This method could most likely be

adapted for different pressure functionals f, provided they are radially symmetric.
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1.3. Necessary Conditions for Non-Negativity

We shall now seek a necessary condition on A by picking a u € W01'2(B; R?) and varying \, observing
when E¢(u) switches sign. We shall do this by considering a v that is zero on a subset K < B
and satisfies Vu € O(2) almost everywhere in a countable disjoint collection of squares that all
sit inside B. For simplicity, we shall just consider squares that are aligned with the axes (i.e: not
rotated). On each of these squares, we will then take u to be an appropriately shifted and scaled
copy of a function u* : @ — R? that satisfies Vu* € O(2) almost everywhere in @ (we shall defer
the discussion of the existence of such a u* for now). If we label each of these squares as Q;, with

width w; and centre ¢;. Then we have that [5]

Erw) = Y [ 2+ 10:0)F0) ~ 1g-0)F () dy

=Z(2!Q,-\+/Q+ f(y)dy—/Q_ f(y)dy>
~S(pers [ ey [, e (e) o)
:2(\B|—\K\)+/Q+Zi:f(%x+q> dx—/QZi:f(%erq) dx

:2(7r—|K\)+>\</Q+ Fo(x)dx—/Fo(x)dx>,

where Fg : Q — R? is given by Fy(x) = >ifo (%X + C,-) and we have defined
QF = {xe @ : detVu*(x) = +1}
and similarly for QF. Thus Ef(u) > 0 requires
+Alp = =2(m — |K]),

where lo = [+ Fo(x) dx — [, Fo(x) dx. We could repeat this calculation with u* o /_; instead of

Uy o ly1 = u*. We would then require
Mo = —2(r — |K]).

Thus, for non-negativity, we require
2(m — |K1)

1ol

Here |lo| and |K| are parameters that depend on how we tile the ball B with squares Q; and also

A<

the choice of u*. We can, in fact take |K| — 7, although this would require u to be identically

zero. Then E¢(u) = 0 regardless of the choice of A. We can also take |K| — 0. This requires B to
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be tiled by squares in its entirety. This is possible using a countably infinite number of squares but
it will also make calculating |/o| more difficult. To calculate |/g|, we will now have to investigate

the existence of u* and explain how to construct it.

1.4. Partial Differential Inclusions

We shall now clarify the existence of a solution v e W1*(Q;RY) « W2(Q;RY) to

Vu(x)e O(d) ae xef2
uix)=0 Vx € 0S2.

(1.1)

Note that this is a PDI (partial differential inclusion), rather than a PDE. Such inclusions have been
studied extensively in the context of phase transformations [1,16—18]. This PDI is a particular ex-
ample of the so called problem of potential wells [8,18,19], namely finding a u € <p+W01'°°(Q; RY)
such that

N
Vu(x) e U SO(d)A; ae. xe
for fixed A; € R9*9. In our case we take just two wells, given by A1 = /41 and Ay = /_1, with

© = 0. We will mainly be interested in the case of d = 2, in which we can characterise the two

wells using the following result from Dacorogna and Marcellini [11].

Lemma 1.2. ([11, Proposition 7.6]) Let M € R>*?. Then the singular values of M are given by

1 1
a1 (M) = 5\/|I\//|§ +2 |det M| — 5\/|M|% — 2 |det M|,

1 1
oo(M) = §\/|/\//|§ + 2 |det M| + E\/|A/l|§ — 2 |det M.
Since we know that the singular values of real matrices are real, we get an important corollary.
Theorem 1.3 (Hadamard’s inequality). Let M € R2*2. Then [M|Z > 2 |det M.

We can then use the lemma to characterise the potential wells using just the determinant and

Frobenius norm.
Proposition 1.4. We have the following equivalent definition of SO(2)/11
SO(2)1* = {M e R**?: M| = V2, det(M) = +1}.

Proof. We have that M € O(2) iff MTM = /1. This holds iff the eigenvalues of MTM are both
1,i.e: 01(M) = 02(M) = 1. If we add/subtract these two conditions using the above proposition,

we obtain

\/|M|E +2|det M| = 2,

V/IMEZ =2 det M| = 0.
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Hence
|M|2 = 2 |det M|, |det M| = 1.

Hence we have that M e O(2) iff |M|g = /2 and det M = +1. O

1.5. Existence of Solutions

The existence of solutions to the problem of potential wells (as well as generalisations) has been
investigated extensively by Dacorogna and Marcellini [11]. In particular, we get the following

existence theorem.

Theorem 1.5. ([11, Theorem 7.28]) Let ¢ € W1*(Q;RY) be such that esssup |Vp|, < 1. Then
there exists a dense (in the L® norm) set of solutions ue W1 *(Q;RY) to
Vu(x)e O(d) a.e xe,
u(x) = p(x) Vx € 09.

(1.2)
We then observe the following:
e Since det V(-) is a null Lagrangian [11, 8.47] [9], we have
Q%] — Q7 =/detVudx=/detV<pdx.
Q Q
e Since the Q* form a partition of Q (up to a set of zero measure), we have
Q7]+ Q7] =19l

Hence we have deduced that

Q
1QF| = Ll <1 i][ detthdx)
2 Q

and so a necessary condition on ¢ is

< 1.

][ det Vo dx
Q

We can show that this condition is satisfied by any ¢ that satisfies the assumptions in Theorem

1.5 by using Lemma 1.2 along with Hadamard's inequality:

1 1
A/ |det V| = 5\/2 |det V| + 2 |det Vi +§\/2 |det V| — 2 |det Vo

1 1
< 5\/|Vs0|§ + 2 |det V| +§\/|W>I§ — 2 |det V| = Vo, < 1.

Hence [det V| < 1 a.e. and so |f, det Vo dx| < £, |det V| dx < 1.
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Remark 1.6. Note that @ constant will always satisfy the necessary conditions and give an equal
distribution of gradients between the two wells, i.e: |Q*| = |2&|

Now, in the case of d = 2, consider a solution v e ¢ + WOZ'Q(Q; R¥) (we have now assumed the

existence of an extra derivative) to 1.2. The PDI can be written as an equivalent system of PDEs
Vu-Vuj =9 Vi,j=1,...,d.
Now Holder's inequality allows us to use the following product rule:
0=V (Vu;-Vu;) = 2Vu; - V¥2u;.
Since Vu; # 0, we have that det V®2y; = 0. Now consider i # j so
Vui-Vuj=0=Vuj=+Vu x 2 =4V x ;2.

so tr V®2y; = V2y; = 0. Hence we must have V®2y; = 0 and so u is piecewise affine.
Fortunately, it turns out neither the restriction to the case d = 2 nor the assumption of a second
derivative are required to show u is piecewise affine. This result is summarised in Liouville’s

theorem.

Theorem 1.7. ([18, Theorem 2.4]) Suppose that Vu € SO(d) a.e. in Q. Then Vu is equal

a.e. to a constant matrix and we can write u(x) = Mx + ¢ for M e SO(d) and c e R,
This immediately generalises to the case of SO(d)/+1. We then get the following corollary.
Corollary 1.8. Suppose that Vu e O(d) a.e. in 2. Then Vu is piecewise constant.

Thus, when constructing solutions to 1.2, it is sufficient to consider only piecewise affine

solutions.

1.6. Solutions in One Dimension

In one dimension, an open subset 2 < R is just a union of open intervals and so, without loss
of generality, we will set Q = (a, b) for a < b. The differential inclusion with a general boundary

condition is then given by
U(x)e{-1,+1} a.e. xe (a,b), u(a) = A, u(b) = B.

This is an example of the so-called Eikonal equation [12]. The constraint on the boundary data
can be expressed compactly as:

|B—A| <|b—al.
Here the geometric need for this constraint is more apparent. In the limiting case of |[B—A| = |b—a],
we obtain a unique solution that is affine. Otherwise, we must instead consider a piecewise affine

solution.
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1.6.1. Two-Piece Solutions

Considering that we cannot have an affine solution, the next simplest type of solution to look for

is a piecewise affine solution with a single peak or trough. Consider the following:

(x—a) xelax] _  (a+b)+(B—A)
_ 2 '

A+
LI+(X) = X 1=
BF (x—b) xe|[x,b]

Then wuy is a solution with a single peak and u_ is a solution with a single trough. In the limiting
case of |[B — A| = |b — a|, we recover the affine solution mentioned previously.
1.6.2. Multi-Piece Solutions

We now generalise to n € N pieces. Consider a partition (xo, ..., xp) of [a, b] and a tuple a €

{—1,41}". We construct a candidate solution u, given by
Ua(X) = Ai1 + aj(x — xi—1) Xx€[xi—1,x] i=1,...,n (1.3)

with Ag = A and A, = B. Then, by continuity, we obtain the following recurrence relation for the
A,‘Z
A,‘—A,',l :Ot,‘(X,'—X,',l) | = 1,...,n. (1.4)

Then we can sum both sides form /i = 1 to / = n to find that

n n
B—-A= ZO{,‘(X,‘—X,'_l) = EQ/AX,' (1.5)
i=1 i=1
where Ax; = x; — xj_1. Then, for any configuration o, we can pick a partition (xo, ..., x,) of [a, b]

satisfying 1.5 and hence obtain the A; through 1.4 to give a solution ug via 1.3.

1.6.3. Application using Polar Coordinates
We can consider another example of an Eikonal equation, namely
IVu(x)|, =1ae. xeB ulog = up € R.
We can find a solution u(r,8) = u(r), given in terms of polar coordinates, by solving
|/ (r)] =1ae re(0,1) u(0) =0, u(l) = up

using the methods from the previous sections. However, this only works when the boundary data
is constant. If we try to generalise this to a variable boundary condition, different techniques will

be required.



Solutions in Two Dimensions

2.1. Explicit Construction of a Particular Solution to the PDI

We shall now set out to construct an explicit solution 1.1 in the case of d = 2 and 2 = Q. This
construction could then be generalised to other bounded domains in R? (for example, one can use
Vitali covering results [13] or the Riemann mapping theorem [7]). This construction will use a
similar approach to the explicit solution given by Cellina and Perrotta [8] for the case of d = 3.
Given an x = (x1, x2) € R?, we define the functions | X;|(x), | Xs|(x) to be the smallest and largest
values in (|x1], |x2|) respectively. These are continuous functions that are invariant under permuta-
tion and taking absolute values of the entries of x.

Next, we define the functions i, s : R? — {1,2} to give the position of the smallest and largest
values in (|x1|, |x2|) respectively. These functions are locally constant.

Now define f¥ : R — R (for k € Z*) by taking f! to be the 1-periodic extension of

t—inf{t,1—t}, te]0,1]

and
1

fk(t) = k-1

FL (25 1t).

2

Note that these are all even continuous functions. We then define a function u! : %@ — R< by

u (x) = inf{F(1Xi] ()., £ (1Xs](x)) 3,
FAIXs0) Xl () + [Xs](x) < 1,
FAIXi(x)  IXil(x) + [Xs](x) = 1.

One can verify that u! is well-defined and Lipschitz on %Q.
Lemma 2.1. (/8, Claim 1]) For all x; € (=1, +1), we have u*(x1,1) = u*(x3 mod 1, 1).

11
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Proof. Taking x = (x1, 1) with x; € (=1, +1), we have
[Xil(x) = Pxal,
[Xsl(x) = 1,

Thus we obtain
uf(xq, 1) = inf{f*(|x1]), FH(1)},

2 | =
u;m,n{“” =0

f2(|x1])  |xa| > 0.

Now we use the that f1, f2 are non-negative, even and satisfy

Hence
u%(xl, 1) = inf{fl(\xl\), 0},

0 x| =0,
U (x, 1) =
2(Jx])  |xe| > 0.
Finally, we have
ui(x1,1) =0,

1
1 '
WA (x1, 1) = F2(x1).

Clearly u'(x1,1) = 2(x1)es is 1-periodic (in fact 3-periodic) in x1. O
We also have that sup{|uf (x)| : x € 3Q, j € {1,2}} = . Then

+Sgn(xi(x))ei(x) |Xi(x)| + ‘Xs(x)| <1

Vui(x) =
_Sgn(Xs(x))es(x) ’Xi(x)‘ + ‘Xs(x)’ > 1,
2 (xg(x) )€ Xty + |Xspa ] < 1,
VU%(X) _ /( s(x)) 5(x) ‘ /(x)| | s(x)‘
f2 (Xi(x))ei(x) ‘Xi(x)| + |Xs(x)‘ >1,
since |f2'(t)] = 1 for t ¢ 27, we have Vu'(x) € O(2) almost everywhere. We now define the

function v : %6 — R by

(x) = {f3(Xs(x)) IXi](x) + | Xs|(x) <
F3Xi1(x)  1Xi(x) + | Xs|(x) =

Nl—= N~

va(x) = inf{F2(|X;|(x)), F(|Xs|(x))},
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for x € Qs, and

{x1, %2} respectively. One can verify that v is well-defined and Lipschitz on %Q.

FAXI())  IXi](x) + 1Xs|(x) <
F(X () Xil(x) + [Xs](x) =
va(x) = sup{f2(|X;|(x)). F2(1Xs|(x))},

for x € Q;, where Q;, Qs are the sets for which x> is the smallest and largest in absolute value in

V1(X) =

Proposition 2.2. The function v has the following properties:

1. v(xy, x2) = v(|x1], |x2])-

2. v(xy, x2) = v(x2, x1).

Proof. This follows directly from the properties of | X;| and | Xs].

We also have that sup{|v;(x)| : x € 2Q,j € {1,2}} = 2. Then

for x € Qs, and

for x € Qj, so Vv(x) €

Lemma 2.3. (/8, Claim 2 & 3]) We have the following properties of u* and v:

{ 3 (Xit)) €1

) almost everywhere.

° ul(xl, )=v (x1 mod 1 — %O)

o Forallé e [—34 +3], we have

Vr—1(€1,0) = 2v, ( §1+ E l)

where the indices are taken modulo 2.

X0l + [Xsp0 | <

|Xi(><)’ + |Xs(x)| >
IXio | + [Xspa | <

IXio| + [Xs)| >

|X/'(x)’ + |Xs(x)| <
‘Xi(x)’ + ’Xs(x)| >
|X/'(><)’ + |Xs(x)| <

|Xi(><)’ + ’Xs(x)| >

42

N~ N~

Nl= Nl

Nl= Nl=

Nl= Nl=

NlR Nl=



14 2.1. Explicit Construction of a Particular Solution to the PDI

Proof. For the first part, consider an arbitrary t. We then have

Pt <

O )

1
3
1
2
va(t, 0) = inf{£2(0), F2(|t])},
for (t,0) € Qs, and
30) |t| <

1
w(t0) =4 j
=) 1t =3

for (t,0) € Q;. We note that

Taking t = x; mod 1 — % € [—% +%] then

(t,0)e Q2 — t =0,

(t,0)eQ? < t#0,

and thus we obtain

for t =0, and

for t # 0. This can be written more simply as just v(t,0) = f2(t)ey. The proof then follows from

the fact that 2 is %—periodic and so
F2(t) = f2(x1).

Moving on to the second part, we have already determined that v(£1,0) = f2(¢1)es, for any

¢1e[-3,+3]. Also, for any x; € [—3, +3], we have

1 2 (3)  |xl=0,
%1 <X1, §> =

FPbal) bal =0,

Vo <X1, %) = inf{f2(|x1|), £2 <%>}
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for (x1,1) € Qs, and

1 3(al) Il =0,
itx,, =z | = L
2(3) |al=0

V2 (le %) = sup {f2(|xl|), f? <%) } '

for (x1,4) € Q;. We simplify in a similar manner to the previous part and find that v (xi, 3) =

f3(x1)e1r. Now, taking x; = 3€1 + 7, we have

11 1 1
< §1+ E 5) =f3 <§§1 + Z) (51) = —V2(€1 0)
and v (%51 + %, %) =0= %vl(gl, 0), completing the proof. O
1

We now define the layering function £ : R x [-1, +1] — R?, by

1
Zl(xl,XQ) =v <x1 mod 1 — §,X2> :
Lemma 2.4. (8, Claim 4]) We have £}(x1, x2) = £1(|x1], |x2|).

Proof. This follows directly from the properties of v and the fact that

2

1 1
leod1—§’= xlmodl——’.

More specifically, we have

1
'el(Xl,X2) = X1 mod 1 — E X2>

v

1
x; mod 1 — 5’ , |X2|>

v

1
|x1| mod 1 — 5’ : |X2|>

v

7~ N 7 N\ /’_‘\,/’_‘\

1
|X1| mod 1 — 5, |X2|>

e

—~~

Ix1|, [x2]).

Furthermore, we define £7 : R x [—5, +5: | — R?, by

1
2n—1

(Z”(xl,xz) = (2"71X1, 2”71X2)

for each n € N. Then the result of the previous lemma extends to all the £".
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Lemma 2.5. ([8, Claim 5]) For each n € N, we have

1
foll(xl, O) = e’; (Xl, §> )
where the indices are taken modulo 2.

Proof. We calculate

1
0" (xg,0) = 521(2%, 0)
1 1
= iv <2”X1 mod 1 — §O>
1 1 1 11
= ﬁT (2V <§ <2nX1 mod 1 — 5) + Z, §>> ,
where T denotes the linear operator corresponding to the permutation (12). Then
1 1 1
+1 _
en (Xl, 0) =T <FV <§ (2nX1 mod 1) ) §>>
=T on—1 d1- 1 =
=T {51V ximod1—2xs(xi). 5 | ).

where S = J,,.z[2n — 1, 2n). Now, since

t v (t, %) = 3(t)e

is 1-periodic, we can conclude that
1 11
41 _ 1
Z” (Xl,O)—T<FV<2n X1 mod1—§ 5))

1 PR |
=T <2n_1el (2 xi, 5))
1
=T <X1v ﬁ) :

We now define the layers L", for each n€ N, by

=1 1
L”:{xu@ Z—k ol < 227&!X1!<\X2\}

k=0 k=0

= { X1 X2) 2 — 2%~ | | <2-217" & |X1| < |X2|}.

We have already defined u! on £!. We further define u” on £" by

n—2
. 1
0 (x1,32) = &7, ) <X1’ el = 2 y)

k=0

for each n > 2.
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Proposition 2.6. We have the following property of u":
u"(x1, x2) = u"(Pxal, [x2|).

Proof. If (x;, x2) € L", then |xa| — Y7_3 2 =050

The result then follows from lemma 2.4. O

Lemma 2.7. (/8, Claim 6]) We have continuity from u"~! to u", in the sense that

and

The proof then follows from making the substitution

ne—n-—2

re—j—n
in Lemma 2.5. O

We then extend each u” to the annulus

by setting
u"(x) = u"(|Xi|(x). [Xs|(x)),

which are all continuous. We also have that sup{[u](x)| : x € A"} < 2,71_1. To compute the

gradient Vu' at a point x = X, we recall that there exists integers

T=1i(X) 5=5s(X)
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such that u"(x) = u"(x7, xs) for all x in a neighbourhood of X. We then calculate the gradient with

respect to (x;, xs) to be

n—2
_ 1
V7’§UJU(X7, Xg) = V7'§‘ef_(1n+1) (Xj, |X§| — E ?>
k=0

1 1
1 -2 -2
= V7'§2n_2 Zj_(n_H) <2n X7, 2!1 (‘Xg’ — 2_/())
=0
n—

= VigVi—(n+1) (& &) - =

[l
<
[}

N
Tn—\
N
~T<.

0
+
=
N
N
oS
3
(@]
o
—
N
7
N
N x
ar
|
N
-
~_—
~_—

almost everywhere by chain rule. Here

21 1 0
n€s) = 2" mod 1,272 (x| - ), o | | T = :
(&, &3) <2 x;mod 1,2 <|X | k2=02k)) (O sgn(x§)>

Then there is a permutation matrix P (depending only on n) such that
Visu" (x5, xs) = Visv(&, &) - PL € O(2).
We define u* : Q@ — R? by
u(x)=u"(x) xe A" n=1,2,...

Then u* is 1-Lipschitz and solves 1.1.

Figure 2.1: Plot of particular solution u* and its Jacobian det Vu*.
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2.2. Simplifications of Constructed Solution

Since we are working in two dimensions and the previously constructed solution has been adapted

from the three dimensional case, there are a number of natural simplifications that occur. Firstly,

an equivalent form for u! : £Q — R? is

For v :

A=

Q@ — R, we have

vi(X)

fl

sy - {700
f(xa)
2

P (S CUNEE
F2(bel)  Ixh

o LU
FPbel)  Ixh
2

o L
F(el)  F2(]

ui (x) = inf{F1(]xal), £ (b))},

\%

N

) F2(IXsl(x)  Ixli <1,
Uz (x) = )
FE(Xil(x)  Ixli = 1.
[P X<k
Pxal) Ixlh = 3,
_Jinf{f2 (D). PP} bal < el
sup{f2(]x1]), F2(Ix))}  [xal = [xal.

F(bal) < fH (),
FH(bal) = F(bel),
1 & ’Xﬂ = |X2| || ‘Xh >1 & |X1| < ‘Xg‘,

ST & af<Po|llxh =1 & x| = |,

NI~ NI

Fbal) < FPbel) & bal < bel | F2(xl) = F2(x)) & x| > |xl,

xi]) < F2(Jx]) & |xi| = x| || F2(Ix]) =

Labelling the conditions from 1 to 8, one can verify that

1l = 4,
2 — 3,
5 < 8,

6 — 7.

F2(Ixi]) & x| < |x2l.
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Since the fX are all even functions, we can drop most of the absolute values and simplify as follows:

u(x) = (Fxa), o)) X <1 & x| <ol X =1 & pal =[x,
(FL(x2), f2(x1))T IX|: <1 & |xi|= x|l Ixi=1 & x| < |xa,
oy = | (P00 P202) T s >
(F3(x), F2(x1)) " Ixlh < 3.

If we now assume x € £ := | J;_; £", we can simply write

T
() = (Flx), f2()) " Ixh <1,
(F10e). F2x) " al =1,
T
Vo) (FP0a). F20))  Ixh =3,
T
(f3(X2), fz(Xl)) ‘X‘l < %
We then calculate the gradients to be
fU(x) 0
0 (x) st
X:
Vil (x) = 4 ?
0 fV(x)
o x| =1,
L f (Xl) 0
;
f¥(x) 0 .
0 (x) e
X
Vv(x) =« ) ?
0 f3(XQ) 1
20 o XL < 3.
X1

Since |fK'| = 1 almost everywhere, the gradients are both in O(2) almost everywhere.
Then we define £7: R x [—35, +3: ] — R2 by

1
El(xl,XQ) =v (xl mod 1 — §,x2>

1
2n—1

E”(xl,xg) = 61(2”*1x1,2”*1x2)

and u": L" — R? (for n > 1) by

01
U"(x1, %) = T 11 (xq, [xo| — 2 +2277) T = (1 O) :
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Then the gradients are

1
Ve (x1,x2) = VL (2" x1, 2" M) = Vv <2n 'x; mod 1 — = 2 2”_1x2>

and
n n—1 n—1 2_n 1 0
Vu'(x1, %) =T" VL (X1,|x2|—2+2 )
0 sgn(x2)
1 1 0
=T7"1vv (2”2x1 mod 1 — =, 2" 2|x| — 2771 4 1> _
2 0 sgn(x2)
Hence
+(xq) F? (x x|1 <1
et Tty - | 102
—2 )Y ) x> 1,
1
det Vu"(x1, x2) = (—1)" " sgn(xz) det Vv [ 2"?x; mod 1 — 2'2”_2\x2\ —on=l g 1>
D) san(o) P ) P (v2) vl = 3,
—(=1)"sgn(e) 2 () ¥ (v2)  Ivh < 3.
where

1 T
y(x) = <2”_2x1 mod 1 — 5 212 |x;| — 271 4 1) :

This allows us to calculate the Jacobian on £. To get the Jacobian on the rest of Q, we use

0
(5109, 15610 - [0 bl < el
0 sgn(xz
V(0 (1X](x). [ Xe] () = 1 ) o
sgni( x:
(X100, [Xs] () N ) = .
sgn(x1) 0

e
+det Vu"(|x1|, [x2|) - sgn(x1) sgn(x2) xe L,
det Vu* (x) = (Ixl, [x2]) - sgn(x1) sgn(x2)
—det Vu"(|x2|, [x1]) - sgn(x1) sgn(x2) xe€ A" — L".
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2.3. Algorithmic Approach to Constructing General Solutions

We will now seek to generalise this construction to find more solutions and/or solutions meeting
a different boundary condition. A natural approach is to find a way of splitting up the domain into
discrete regions (triangles, for example) and then to design a procedure of going through these
regions and assigning a value of the Jacobian det Vu to each one. This should be done in such a

way that the following two properties are achieved.
e The solution u is continuous.

e The boundary condition is met.

2.3.1. Properties of Rotation Matrices

We shall first state some properties of rotation matrices, that will be useful for some of the

calculations performed in this section.
Proposition 2.8. For any 6 € R and k € Z, we have R(6)* = R(k0).
Proposition 2.9. For any matrix Ry € SO(2), we have:
1. Roloa = IaR§.
2. R(Rolea) = aRoR(a)® for every a € R?,
3. aR(aa) = R(a) for every a € R?.
for each o € {—1, +1}.
We then get the following result:

Lemma 2.10. Given two vectors a,b € R?, with |a|, = |b|,, there are exactly two matrices

R € O(2) satisfying Ra = b. They are given by
Ru(a, b) = aR(8(b) — ab(a))lq = aR(b)IgR(a)T € SO(2)/4 ae{-1,+1}.

The proofs for the two propositions are purely algebraic manipulations. The lemma relies on
the assertion that there is just one reflection and one rotation of a vector onto another in two

dimensions. This is quite an intuitive geometric result.
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2.3.2. Implications of Continuity

We start by considering four vertices xp, X1, X+, X_ forming two triangles in the plane and prescribe
u(xo) = o, u(xy) = ug with |u; — ug| = |x1 — x0|. Using lemma 2.10, we have two choices of

gradient for each triangle
Ro = Ra(x1 — X0, U1 — Up) ae{-1,+1}.

These choices will then determine the vy = u(xy).

(x1, t1)

(- u-)

Now consider four vertices xg, x1, X+, x— forming three triangles in the plane and prescribe
u(xo) = up, u(xy) = uy with |u; — ug| = |x1 — x0|. Using lemma 2.10, we have two choices of

gradient for the triangles Axgxi x4
Ro = Ro(x1 — X0, U1 — Up) ae{-1,+1}.

(x1, t1)
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If we choose the same gradient for each of the triangles, it then follows that the final triangle
must also have this gradient. Hence we shall pick one of each gradient and, for simplicity, we shall
take R11 on Axpxix; and R_; on Axpxix—. This determines the uy = u(x4). Now we consider
the triangle Axpxyx_.

By considering the edge from (xp, to) to (x4, us) we see that, if we want a gradient in SO(2)/41
on the final triangle, it must be R 1.
By considering the edge from (xp, tg) to (x_, u_) we see that, if we want a gradient in SO(2)/_;
on the final triangle, it must be R_1.

However, in general,

Uy —U— # Ra(X4 —x2) ae{-1,+1}.

Thus, neither of these choices are guaranteed to give a continuous solution wu.

2.3.3. Deriving a Continuity Equation

We will now consider a sequence of edges X; € R? in the independent variable and a sequence of
choices for the sign of the gradient a; € {—1,+1}. Given a o € R? such that [X|, = |do|,, we

generate a sequence of edges &; in the dependent variable via
LTI': RO(,'()_(I'—leTI'—l))_(I' I: 1121"'

Proposition 2.11. For any n€ N, we have

n—1

iy = anR(To)R(a10(%0)) T | [ R((0ti — i 1)0(%)) o, K-
=1

Proof. We shall prove the statement by induction. When n = 1, we obtain

i1 = Ra, (X0, o)X

= a1 R(ilo) oy R(X0) 1%
= o R(do)R(

= a1 R (i) R(e1%0) " oy X1,

1)

—

—a -
Xo) 1/qu:L

j

proving the n = 1 case. Now suppose the statement holds for n = k € N. Then setting n = k + 1,
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we have

k1 = Rayepy (Rier U)X

= k1 R(01) oty R(Ri) T X1

k-1
= ax1R (Oth(Uo (a10(%0))" H R((ati — aiy1)0(X ))/ak;{k> Jegery R(%i) T X1
i=1
k-1
= ax41R (R(Uo (210(50)) T H R((aj — ajy1) 9()_(’/))/0‘kak)_(k> R(%) ™ oy, y X1
=1

= ak+1akR(L70)R(a19(>?o))T R((ai — aj1)0(X))) R(aueXi) ** R(Xie) ™ oy, K1

,_.

= a1 R(lo) R(16(X0)) H R((aj — air1)0(%5)) (ax R(0k X)) ™ R(RKi) ™%+ oy, K1
= a1 R () R(a10(X0)) H R((ai — ajy1)0(5)) R(Xk) ™ R(Xi) ™+ gy, Xt
= o1 R (o) R(16(%0)) H R((otj — 0j11)8(X)) R((ak — otk:1)6(Xic)) Laxye s 1 X1

k
= a1 R(l0)R(16(%0)) T | [ R((e — @i+1)0()) e, K1,
=1

so the statement holds for n = k + 1. O

Now we suppose there is n € N such that X, = Xp. For the constructed map to be continuous,

we must then have i, = . Using the previous proposition, we then require

n—1

anR(I)R(18(%0) " [ [ R((ati = @i1)8(%)) o, X = .
i=1

We can then write X, = R(Xp)e1 and o = R(lp)er to obtain

n—1

anR (o) R(c16(%0))" | [ R(i = @i41)8(%)) ey R(X0) €1 = R(ilo)er.
i=1

By making some slight simplifications, we find that

n—1

anR(%)*"R(@10(%0)) " | [ R((ti = @i+1)8()) la,e1 = &1
i=1

and hence

n—1
o 1_[ R((aj — atit1)0(X)) lager = aoR (Z (oj — a,-+1)6(>?,)> lager = e

i=0
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with ag := ap,. Using lemma 2.10, we must have that
n—1
agR (Z (O‘/ - O‘i+l)9()_(i)> lag = Rao(elv 61) = 0lay-
i=0
Thus

i=0
Writing Aaj = a1 — a;, we have found that

n—1
Z A(X/@()_(}) =or 0.
i=0
If we shift indices and rearrange, this can be written equivalently as

n
Z a;A0(Xi—1) =27 0,
-1

where AG(%;) = 0(%iy1) — 6(%).

n—1 n—1
R (Z (aj — Oti+1)9(>?i)> == Z (cj — aiy1)0(X;) =2r 0.
i=0

(2.1)

(2.2)

The problem has now become finding a partitioning of the domain Q (which can be thought of

as a set of edges )_() such that, given any cyclic sequence (>?,-),’7:O c X, we can pick a tuple

o€ {—1,+1}" satisfying 2.2. This is clearly a very difficult problem and it is unclear on what the

best strategy to solve it is. With this in mind, we shall now seek a different approach that ensures

continuity throughout.
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2.4. Analytic Approach to Constructing General Solutions

In this section, we shall assume 2 is convex. We shall first derive a method to construct solutions
to the general PDI
Vu(x)e O(d) ae. xefl (2.3)

We can write this PDI as a nonlinear system of PDEs
Vuj - VUJ' = 5,'J' V/,j.
In two dimensions, we can isolate the gradients as

Vui(x) = o1(x) - (+cosb(x), —sinb(x)),

Vun(x) = o2(x) - (+5sin8(x), + cosB(x)),

where we assume o; : Q — {—1,+1} and 6 : Q — S? to be piecewise C!. By taking the curl, we

derive the necessary condition

0 =01(x) - (cosB(x)0x — sinB(x)6y)
0 = 02(x) - (sinB(x)0x + cosb(x)b))

or equivalently
RO)V'O=0 ae inQ.

Since ker R(9) = {0}, we have in fact that 0 is piecewise constant. To calculate u we take a
line integral from a fixed point X € 2 to the variable point x along a path that only varies in one
coordinate at a time (this will allow us to make use of the ACL property of Sobolev spaces). For
example:

t(xa, %2)T + (1 —t)x te0,1],

(t—1)(x, )"+ 2—-t)(x,x2)T tell,2].
Then we have that

i (x) =11 + /X 01(x) (+cos(x’), —sin6(x")) - dx’

X

Ua(x) = To + /X 02(xX) (+sin6(x’), + cos6(x")) - dx’

X

or equivalently

u(x) =1+ /XZ(X/)R(Q(X/)) dx’ Y (x) := diag(o1(x), 02(x)).

X

This gives us a way of generating a broad class of solutions to 2.3 with u(Xx) = w.
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Now consider a constructed solution ug : Q — Q to 1.1 (e.g: u* constructed in section 2.1.)

and suppose we wish to find transformations that can create additional solutions v to 1.1.
Definition 2.12. A function w € W1®(Q; Q) is a post-transform if it satisfies

Vw(x)e O(d) ae xeQ,
w(0) = 0.

We can use the previously derived techniques to find a broad class of post-transforms. Taking

X = 0 and 7 = 0 we have that

X
W) = [ ZOORE) Y T() = diag(es(x), 7a(x)
0
will be a post-transforms for all appropriate choices of o; and 9.
Definition 2.13. A function w € W1 (Q; Q) is a pre-transform if it satisfies

Vw(x)e O(d) a.e xeq,
w(02) < Q2.

We can construct piecewise affine pre-transforms in two dimensions intuitively as sequences of

rotations, reflections and folds of a piece of paper that represents the domain Q.

Example 2.14. The identity transform, given by w(x) = x, is both a pre-transform and a post-

transform.
We can now use these transforms to generate more solutions to 1.1

Theorem 2.15. Let ug € W2?(Q;R?) solve 1.1. For any pre-transform we and post-transform

Wpost, the composition u = Wpest © Ug © Wpre Solves 1.1.

Note that we may have u ¢ W12(Q;R?). However, we do know that wpest © Ug € W12(Q2; R?)
if Wpost © Ug € L2(Q; R?) [20].

Example 2.16. We shall construct a pre-transform by first folding the domain down the line x; = 0
and then folding along the line x; = v for some arbitrary v € [0,1]. We then construct a post-

transform using the previously mentioned integral formula with 6 =0, 0, = +1 and

+1 |x[1 <0.1 (mod 0.2),
O'1(X) =
-1 |x|/1 >0.1 (mod 0.2).
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SF Solution SF Jacobian

2.2 4 0 1
T

Pre-Transform Inner Jacobian

22 40 1

Post-Transform

y 2 -2

Transformed Solution Transformed Jacobian

Figure 2.2: Effects of the transformation described in 2.16 with v = 1.
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2.5. Numerical Results

Now that we have a solution u* to 1.1, we can return to our calculation of /o from 1.3.. Further-
more, we can approximate /o by using a symbolic computation engine (such as Mathematica) to
evaluate the integral on the annuli A" for a finite number of n and then bounding the integral on

the remainder of the domain. If we take the first n annuli, we get a bound on the error given by
n
Q- [ A
k=1

per square. We will use 22 annuli and thus have an error bound of € < 7.62939 x 10~ per square.

€< =42_(4_22—f7)2

0.1

0.05

Figure 2.3: Example of a partial tiling of the ball with 15 squares.

Running this calculation with an arrangement of 15 squares, we obtain /g &~ —5.8995 x 104,

For approximating the bound for X\, we take the worst-case scenario
lo] = 5.8995 x 10™% — 15 x 7.62939 x 107° = 4.75513 x 10~

This then gives us that A < 10094.4. It is important that we do not use a square tiling with
symmetries matching those of u* as this will immediately give /g = 0. If instead we calculate
the integral with a simpler arrangement of just 2 squares (with centres (+0.1, +0.3), (—0.3, —0.5)
and widths 1.0, 0.6, respectively), we obtain /g ~ 1.83384 x 10~2. We again take the worst-case
scenario

o] = 1.83384 x 1072 — 2 x 7.62939 x 107° = 1.83231 x 1072,
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This now gives us that A < 148.446.

We could seek to make |/p| larger by switching out u* for a different solution to 1.1. This could be
done, for example, by applying the transforms mentioned in 2.4.. However these will often lead to
a more homogenised partition Q* of @, which will cause |lg] — 0. To increase |/g|, it then seems
necessary for the partition Q¥ to be as unhomogenised as possible. In other words, we want to
maximise the area of the regions on which u* is affine. We currently have no techniques to do this

reliably.






Conclusions and Outlook

To summarise we have found a sufficient condition of the form A < Agyr and a necessary condition

of the form A\ < Apec for the functional
Ef(u) = /B IVulz + f(x)det Vudx  f(x) = A|x|,
to have 0 as its global minimum on W&Q(B;Rz). In particular, we have
Asuf & 9.619, Anec & 148.446.

Assuming that there exists a critical value A, for which

>\>>\crit:>Ef}Ov

A< Aqgit = EfF 20,

we have now established a bounded interval (Asuf, Anec) In Which Aqqr must lie. It is likely that
the value for Ahec can be further decreased using just the methods described in this report with
some optimisations. An exploration for methods of tiling as much a ball with a minimal amount of
squares under certain conditions (we require some amount of asymmetry to avoid /o = 0) may help
shed some light on how we can get the most out of the methods for bounding Anec. It is currently

unclear on how to improve the bounds for Ag,s. We shall finish with some open questions:

e Can these results be extended to general f € Wlm(B; R), with characterisation given by the

value of ||f||,, or [[Vf]l,?

e Can we find a broad class of solutions to 1.1, in the case of a convex domain, using the

integral forms described in 2.4.7

e Are there ways of generating solutions to 1.1 with less symmetry, without oscillations of

arbitrarily large frequency occurring in the interior of the domain?

33






Project

0. Construct solution

to fundamental PDI
6 Month Review

Confirmation Report Prep

1. Fourier approach
to HIM inequality
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6 Month Review

Thesis Writing

6 Month Review
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Properties of Vectors & Matrices

Proposition A.1. Ifa;,bjeR" fori=1,..., n, then

(o0 o) (b b) = Yaen
=1

Proposition A.2. If A, Be R™", then
cof (A + B) = cof (A) + cof (B),
det(A+ B) = det(A) + det(B) + {cof (A), B)g .
Proposition A.3. /fa, b,c,d eR", then
(a®b, c®d)r =<a,c)<{b,d),.
Corollary A.4. [fa, be R", then
|a® blg = [a® bl = |al, - |bl5.

Proposition A.5. If a, b € R? such that b Ja # 0, then

- bTJ
<a b) 1:ﬁ<a1—_ﬂ'>'

Proposition A.6. /f A€ R?*?, then
cof(A) = JTAJ,
1
det(A) = §<cof(A), Ade .

Corollary A.7. Ifa, be R?, then
cof(a® b) = Ja® Jb,

det(a® b) = 0.
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