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Finite vs Infinite Dimensional Space

Finite Dimensional Infinite Dimensional
o Euclidean space @ Sequence spaces
R,R% R3, ... RY = {(x)2; : x; € R}
o Balls @ Function spaces
B={xeR":|x| <1} RE = {f:R > R}
o Cubes @ Lebesgue & Sobolev spaces

Q= [_17 +1]3



Finite Dimensional Calculus
Consider a function f : B — R3, with B the *
unit ball in 2D, given by |

u+v d [

fluyv)=1 u—v

w2 + 2

Then the gradient is given by

+1 +1
Vi(u,v)=[+1 -1
2u  2v

We can use this to investigate stationary
points, minima, maxima etc.



Infinite Dimensional Calculus

Now consider a functional f : RN — R, given by
f(x)=x1

Then the gradient is a sequence V£ (x) with entries given by

1 i=1
VF(x)); = 61, =
(VF() = b1, {0 ol



Infinite Dimensional Calculus

Now consider a functional f : RN — R, given by
f(x)=x1
Then the gradient is a sequence V£ (x) with entries given by

1 i=1

(VE(x))i =61, = {0 o1

We shall mainly focus on functionals defined on spaces of
functions.
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to look for local minima.
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Local Minima in Finite Dimensions

We often use
Vf(x)=0

to look for local minima. Why does this work?
Taylor expand f:

f(xo + ev) — f(x0) = eVF(x0)[v] + €6V3F(x0)[v, v] + o(€?) > 0

for any vector v.



Local Minima in Finite Dimensions

We often use
Vf(x)=0

to look for local minima. Why does this work?
Taylor expand f:

f(xo + €ev) — f(x0) = eVFf(x0)[v] + 62V2f(x0)[v, v] + 0(62) >0
for any vector v. Then

Vi(x) =0
V2f(xg) > 0

is sufficient. However, only V2f(xo) > 0 is necessary.



Consider a functional

1
F[x]=/0 F(tx(8),X(8)dt  x € C2((0,1),RY)

For now, assume f € CL.
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Local Minima in Infinite Dimensions

Consider a functional
1
F[x] :/ f(t,x(t), X' (t))dt  x € C?((0,1),RY)
0
For now, assume f € C!. Again, use a Taylor expansion:

1
F(xo + ep) — F(x0) :/ f(t,xo + €, x4 + €p') — F(t, x0,x¢) dt
0



Local Minima in Infinite Dimensions
Consider a functional
1
Flx] :/ f(t,x(t),x'(t))dt  xe C?((0,1),RY)
0
For now, assume f € C!. Again, use a Taylor expansion:
1
F(xo + ep) — F(x0) = / f(t,xo + €, x4 + €p') — F(t, x0,x¢) dt
0

1
— e/ fi(t, %0, X0) 0 + Fr (£, x0, X5) 0" dt + o(e)
0



Local Minima in Infinite Dimensions
Consider a functional
1
Flx] :/ f(t,x(t),x'(t))dt X € C2((0, 1),Rd)
0
For now, assume f € C!. Again, use a Taylor expansion:
1
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1
— e/ fi(t, %0, X0) 0 + Fr (£, x0, X5) 0" dt + o(e)
0

1
= 6/ (fX(thmX(/)) - f;(’(taXOaX(/)),) pdt + o(e)
0



Local Minima in Infinite Dimensions
Consider a functional
1
Flx] :/ f(t,x(t),x'(t))dt X € C2((0, 1),Rd)
0
For now, assume f € C!. Again, use a Taylor expansion:
1
F(xo+ep) — F(x0) = / f(t,xo + €, x4 + €p') — F(t, x0,x¢) dt
0
1
— e/ fi(t, %0, X0) 0 + Fr (£, x0, X5) 0" dt + o(e)
0
1
- (—:/ (fx(t,Xo,X(/)) — fX/(t,xo,xé)') edt + o(e)
0

We want this to be positive for all ¢ € C°(0,1) and small €.



Local Minima in Infinite Dimensions

If we want

1
/ (fx(t,xo,x(')) — fX/(t,xo,x(’))') pdt=0
0
we must have

OF
(5—X = fX(t7X07X(/J) - fx’(t7X07X6)/ =0

Vo € C°(0,1)

vVt € [0, 1]



Local Minima in Infinite Dimensions

If we want

1
/ (Fult x0038) — Fu(t.30,4)) @dt =0 Vi € C2(0,1)
0
we must have

oF

ST fi(t, x0, %) — fr(t, x0,%4) =0 vVt € [0,1]
X

This is known as the Euler-Lagrange equation. It is a second

order differential equation to be solved for xp(t), provided we

specify initial /boundary conditions.
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Consider two points a,b € RY.

What is the shortest path connecting them?
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Consider two points a,b € RY.

What is the shortest path connecting them?
The arc length of a path r(t) is

1
L[r]=/0 ¥ (0)], dt
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Arc Length

Consider two points a,b € RY.
What is the shortest path connecting them?
The arc length of a path r(t) is

1
L[r] :/0 ¥'(t)], dt

SO




Arc Length

Consider two points a,b € RY.
What is the shortest path connecting them?
The arc length of a path r(t) is

1
L[r] :/0 ¥'(t)], dt

SO

5L d vy TOFOL- O )
o A, ¥(t)5




When d > 1

F(t)or'(t) - [P (t)|a1 #0
Hence we solve

r'(t)=0 r(0)=a, r(l)=b
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When d > 1

r’(t) ® r’(t) - |r’(t)|§ 140
Hence we solve

r//(t) =0 l’(O) = a, r(l) —b
This gives

r(t)z(b_a)t+a
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Projectiles

The action of a particle of mass m travelling along a path r(t),
under the influence of gravity, is

1m
S[r]:/o PR+ me- ()t = (0.-g)
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Projectiles

The action of a particle of mass m travelling along a path r(t),
under the influence of gravity, is

1 m 5
S[r]:/o PR+ me- ()t = (0.-g)

so

oS d

= = mg— S (8) = —m(' (1) — g)
If we launch a particle from a cannon at the origin and it lands at
(1,0). The trajectory must solve

r'(t)=g  r(0)=(0,0), r(1)=(1,0)



Consider a smooth light ball travelling along a path r(t) from the
origin to (+1,—1).
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Brachistochrone

Consider a smooth light ball travelling along a path r(t) from the
origin to (+1,—1).
The time taken for the ball to reach its destination is

/ m / 1—2;)/ V—2gy(x)

Tl =



Brachistochrone

Consider a smooth light ball travelling along a path r(t) from the
origin to (+1,—1).
The time taken for the ball to reach its destination is

G,
Uy _/ \/2g r( / —2gy
so
6T 1+ y/(x)? d y'(x)

I By VTPV 28y (x




Brachistochrone

Consider a smooth light ball travelling along a path r(t) from the
origin to (+1,—1).
The time taken for the ball to reach its destination is

L1+ y(0)?
Thr = / \/2g r( / —2gy
T T TR eE d y(x)
or 8g(—y(x)? dx 1+ y(x)?2/2gy(x

_ 14y () + 2y (x)y" (%)
V—8gy(x)3(1 + y'(x))3




Thus we need to solve

1+y'(x)* + 2y(x)y"(x) = 0

y(0)=0, y(1)=-1
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Brachistochrone

Thus we need to solve

1+ Yy (x)*+2y(x)y"(x) =0  y(0)=0, y(1)=-1

The solution to this is an example of a cycloid and can be written
as

x(wh) = a0 — sin(0))
y(wf) = a1 — cos(h))

for an appropriate choice of @ > 0 and w.



Elasticity & SME

Deformations of materials Q are
often investigated by studying
functionals:

E[u]=/Q<,0(Vu,9)dV

where
® E is the total energy of the
material.
® ¢ is the stored energy
density.
® u is an admissible
deformation.

® 0 is the temperature.



Shape Memory Effect

Changing the temperature changes the functional and thus
changes the minimisers (what we observe)

(b)
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Definitions

Dirichlet Energy Functional

The Dirichlet energy functional D(u) can be used to describe the
strain energy density under a deformation u.

D(u) :/ Vo2 dx € u+ WEA(B;R)
B

with B the unit ball and v is the double-covering map [1].
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D(u) = D(uo) + E(u — up)



Definitions

Dirichlet Energy Functional

The Dirichlet energy functional D(u) can be used to describe the
strain energy density under a deformation u.

D(u) :/ Vo2 dx € u+ WEA(B;R)
B

with B the unit ball and v is the double-covering map [1].

In showing that ug is a stationary point of this functional, we
introduce an 'excess’ functional E:

D(u) = D(uo) + E(u — up)
where, in particular, we have

E(u) = Er(u) ::/B|vu|§+ £(x) det Vi dx

with f(u) = 3log|x|, (often called a "pressure’ function) [1].
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Definitions

A 1D Family of Polyconvex Functions

The functional
Ef(u) :/ IVul2 4+ f(x)detVudx  ue Wy?(B;R?)
B

is polyconvex for any choice of f € Lip(B).

We will focus on the case of f(x) = \|x|, for a parameter A € RT
and denote E) := Ef.
We observe that:

o £,(0)=0.

o E, is either unbounded below or bounded below by zero.

Hence E) has a global minimum iff Ey > 0.



Sufficient Conditions for Global Minimum

Pointwise Hadamard

We can use of the following theorem

Hadamard's Inequality [3] J

For any matrix A € R?*2, we have |A]Z > 2|det A|.
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Sufficient Conditions for Global Minimum

Pointwise Hadamard

We can use of the following theorem

Hadamard's Inequality [3]

For any matrix A € R?*2, we have |A]Z > 2|det A|.

to show

A
E(@) > [ [Vu(lf = 5 el IVal)

= [ (151 ) IFu ax > 0

for A < 2. Can we do better?



Sufficient Conditions for Global Minimum

Fourier Series & Poincaré Inequality

Consider a Fourier expansion of u as

u= Zu(j) = %Ao JFZA cos(jf) + Bj(r)sin(j6)

Jj>0 J>0

with Aj(1) = Bj(1) = 0 for each j > 0 [1].



Sufficient Conditions for Global Minimum

Fourier Series & Poincaré Inequality

Consider a Fourier expansion of u as

; 1
u= Z ul) = §Ao + ZA ) cos(j0) + Bj(r)sin(j0)
Jj=0 j>0
with Aj(1) = Bj(1) = 0 for each j > 0 [1].

Then we make use of a Poincaré inequality for the Fourier modes:

Poincaré Inequality for Fourier Modes

Let j > 1. Then
2 1 12
/‘u(f)‘ dxg_—z/‘ug) d
B 2 Jo /B 2

where jg is the first zero of a Bessel function.

X
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Applying the Inequality

Applying this inequality, we find
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Applying the Inequality

Applying this inequality, we find

9=% Jo

zZ/jéu
j>0"B
_Z/U M,U; dx UJ-_<

_]>0

< u) Ju(f)>2 dx

u')‘ ’u@‘ dx
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Sufficient Conditions for Global Minimum

Applying the Inequality

Applying this inequality, we find

9=3 [, +\
zj;/BjSu
_Z/U MyU; dx UJ-_<

_]>0

< 0] JU(J)>2 dx

u')‘ ’u@‘ dx
217 2
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Sufficient Conditions for Global Minimum

Applying the Inequality

Applying this inequality, we find

9=3 [, +\
zj;/BjSu
_Z/U MyU; dx UJ-_<

_]>0

< 0] JU(J)>2 dx

u')‘ ’u@‘ dx
217 2

Then we have that A < 4jo = M, >0= E, > 0.

Here 4jo =~ 9.619 is a significant improvement on the previous
bound of A < 2.

) 2
u
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We shall first construct a solution u* € Wol’2 to

Vu*(x) € O(2)

ae x€Q:=[-2,+2
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We will then shift/scale this solution on part of the ball to
construct a map u.
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Necessary Conditions for Global Minimum

The Approach

We shall first construct a solution u* € Wol’2 to

Vu*(x) € O(2) ae x€Q:=[-2+2
We will then shift/scale this solution on part of the ball to
construct a map w.

On the remainder of the ball (which we shall denote by K), we will
take u = 0.

A necessary condition can then be derived:

A< 2(m — |K])
| Zo|



Necessary Conditions for Global Minimum

Partial Differential Inclusions

The PDI
Vue 0(2)

is an example of the probelm of potential wells:

The Problem of Potential Wells [2, 4, 5]
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Necessary Conditions for Global Minimum

Partial Differential Inclusions

The PDI
Vue 0(2)

is an example of the probelm of potential wells:

The Problem of Potential Wells [2, 4, 5]

Vuel| JSO(d)A A e R

-

The following is known for this PDI:

Theorem (Dacorogna and Marcellini) [3]

There exists a dense set of solutions in W1°°(Q;R?).

-

Theorem (Liouville) [4]

All solutions are piecewise affine.

.




2]

A solution has been constructed for the 3D equivalent of this PDI
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Necessary Conditions for Global Minimum

Constructed Solution

A solution has been constructed for the 3D equivalent of this PDI
[2]. We can adapt this for our needs.

_ :

Figure: Constructed solution u* and its Jacobian det Vu*
o [l =

DA



We can then tile the ball with this solution.
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Necessary Conditions for Global Mi

Tiling the Solution

We can then tile the ball with this solution.

Figure: Tiled Solution with 15 Squares

(=]
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We will make use of a simple tiling of 2 squares with

o (+01
1= \+03

) W1=1.0 C2=<

—-0.3
—0.5) wp = 0.6

«O>» «F)r « >

<

A



Necessary Conditions for Global Minimum

Numerical Results

We will make use of a simple tiling of 2 squares with

+0.1 -0.3
cl = <+03> w1 = 1.0 Cy = (_0‘5> w1 = 0.6

We then find that

|K| =7 —1.36 ~ 1.78159
|Zo| = 1.83384 x 1072 42 x 7.62939 x 10~°



Necessary Conditions for Global Minimum

Numerical Results

We will make use of a simple tiling of 2 squares with

(401 B _(-03 _
cl = <+03> w1 = 1.0 Cy = (_0‘5> w1 = 0.6

We then find that
|K| =7 —1.36 ~ 1.78159
|Zo| = 1.83384 x 1072 42 x 7.62939 x 10~°

where the integral was approximated by calculating symbolically on
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Necessary Conditions for Global Minimum

Numerical Results

We will make use of a simple tiling of 2 squares with

(401 B _(-03 _
cl = <+03> w1 = 1.0 Cy = (_0‘5> w1 = 0.6

We then find that

|K| =7 —1.36 ~ 1.78159
|Zo| = 1.83384 x 1072 42 x 7.62939 x 10~°

where the integral was approximated by calculating symbolically on

the region |x|,, < Y75, 2% and bounding on the remaining square

annulus.

This leads to a bound of \ < 148.446.
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Outlook

Summary

To summarise we have found that:
e )\ <9.619 is sufficient for Ey > 0.
e )\ < 148.446 is necessary for Ey > 0.

With further optimisations, we could try to refine these bounds.

We could try to find At such that Ey > 0 iff A < Aqit.
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